AccuSizer[®] 3.1.4.0 Software Release Notification

AccuSizer SPOS Systems

In August of 2023 Entegris released AccuSizer® software version 3.1.4.0 that includes several new features:

- DF2 search; the ability to automatically determine the optimum dilution factor for concentrated samples.
- Volume fraction calculation: this provides a calculation quantifying the percent of particle volume within a defined range.
- Scientific notation for PFAT5 calculations; this facilitates data interpretation of PFAT5 calculated results at very low concentration levels.

DF2 SEARCH

Applicability: AccuSizer APS systems two stage dilution mode only

The older PSS L2W software included the ability to automatically adjust the dilution factor (DF2) for unknown samples. In previous versions of AccuSizer software, the user needed to choose a DF2 value for all samples as shown in Figure 1, in this example the range is 11.5 - 481.

Instrument Chann	s/Physical Properties Report	
General		
Injection volume	1000 µL Replicates	1 🗘
Equilibration volume	0.5 mL Equilibration tir	me (15.80 sec)
Size threshold	0.5 µm Syringe flow ra	ate (1.90 ml/min)
Sample run time	60 sec	
Flush transfer line	efore each replicate Delay between re	eplicates 0 sec
Sens	r Mode	
	Extinction Image: Summary Sum	nation
Target concentration	3000 /mL Capture volum	ne 3.00 mL
Background concentra	on 500 /mL Capture time	0 sec
Background concentra DF2 Valid Range (11.		0 sec
-		lution loop bypass
DF2 Valid Range (11. Stirrer Speed 40 %	-481) 11.53 • Auto d	lution loop bypass
DF2 Valid Range (11.	-481) 11.53 • Auto d	lution loop bypass
DF2 Valid Range (11. Stirrer Speed 40 % Measurement Mode	-481) 11.53 • Auto d	lution loop bypass
DF2 Valid Range (11. Stirrer Speed 40 % Measurement Mode 7 Two s	-481) 11.53 - Auto d Sample equilibration	lution loop bypass
DF2 Valid Range (11. Stirrer Speed 40 % Measurement Mode	-481) 11.53 - Auto d Sample equilibration	lution loop bypass

Figure 1. Legacy Setup Protocol for the APS software.

Note: DF2 is not the simple dilution ratio one might expect, but rather a calculation specific to Entegris AccuSizer systems. See Appendix I for details.

The new 3.1.4.0 release now includes the feature to automatically search for the proper DF2 value, in the Setup Protocol window shown in Figure 2.

	hysical Propert	ies R	eport
General			
Injection volume	0	μL	
Equilibration volume	0.5	mL	Equilibration time (240.00 sec)
Size threshold	0.56	μm	Syringe flow rate (0.13 mL/min)
Sample run time	60	sec	
: Sensor M	ode		
	O Extinct	ion	 Summation
Target concentration	300	00 /mL	
Background concentration	50	10 /mL	New Sample
Capture volume	1.5	50 mL	DF2 Search
Capture time		0 sec	DF2 [34.80-481.00] 481
Stirrer		SW	nie equilibration time:
Stirrer Speed 40 %		Sar	nple equilibration time: 0 sec
		Sar	nple equilibration time: 0 sec
Speed 40 % Measurement Mode	e dilution, manu		
Speed 40 % Measurement Mode	e dilution, manu		
Speed 40 % Measurement Mode	: dlution, manu		
Speed 40 % Measurement Mode Two stage Protocol Filter		ial inject	on
Speed 40 % Measurement Mode Two stage		ial inject	

Figure 2. New Setup Protocol window for the APS software.

Select New Sample and/or DF2 Search and the system will automatically adjust the DF2 (dilution factor) and then perform the measurement using the chosen DF2 value. The measurement sequence when DF2 Search is selected in the protocol is shown below:

- 1. The system flushes to the selected background concentration.
- 2. The highest available DF2 value is used for the initial measurement.
- 3. The software checks if count rate (particles/mL) lies within 15% of the target (here 3000/mL).
- 4. If the count rate is within range, the measurement begins.
- 5. If the count rate is too low, the DF2 value decreases and the count rate is checked again.
- 6. Steps 3-5 are repeated with different DF2 values until the count rate is within 15% of the target and measurement completed.

This measurement sequence is extremely helpful when testing a new sample with unknown concentration, or a sample with known concentration that has not previously been measured on the AccuSizer APS. The operator can choose the DF2 Search feature and let the hardware/software determine the optimum dilution level.

Note: The available range of DF2 values is influenced by the syringe size and injected (loop) volume. If a protocol requests an impossible combination of values, the software will not allow the protocol to be saved.

Note: During the DF2 search sequence the highest available DF2 is used first (lowest concentration), followed by lower values until the desired count rate is achieved. This avoids cell window fouling due to elevated concentrations flowing through the sensor. The screen shot shown in Figure 3 shows how the run time data appears during the DF2 Search measurement sequence. In this example two different DF2 values were attempted before the third DF2 value achieved the desired count rate, and the measurement was performed.

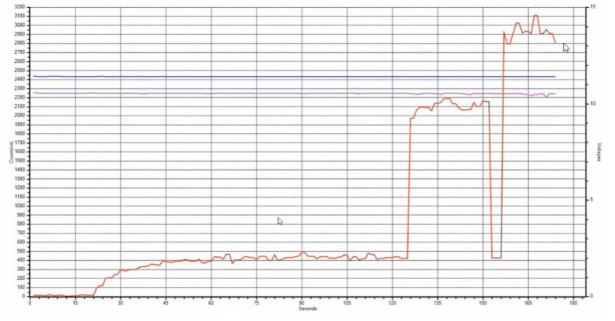


Figure 3. Run time data during a measurement.

VOLUME FRACTION CALCULATION

Applicability: All AccuSizer lab systems

The previous AccuSizer software versions only include one specific volume fraction calculation – volume % > 5 μ m, or the PFAT 5 calculation. This calculation is specific to the pharmaceutical test USP <729>, Globule Size Distribution in Lipid Injectable Emulsions. The new AccuSizer version 3.1.4.0 includes the ability to calculate the volume fraction within any defined size range.

A powder metal sample was analyzed on the AccuSizer APS and the Volume Fraction calculation was performed on a size range of interest; $10 - 100 \mu m$. The complete distribution on a volumetric basis is shown in Figure 4.

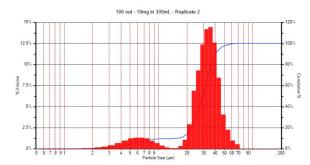


Figure 4. Volume % result for metal powder.

The volume fraction results for the defined size range are shown in Figure 5.

1	0.001	10.0 - 100.0	79.28612	

Figure 5. Volume fraction report.

Note: See Appendix II for the PFAT5 and Volume Fraction calculation equations

SCIENTIFIC NOTATION FOR PFAT5 CALCULATIONS

Applicability: Typically AccuSizer APS systems, but the feature works for all models

The PFAT5 calculation is used for the Method II section of USP 729 testing. The volume-weighted result >5 μ m (PFAT5) must be <0.05% to pass the test. Many calculated PFAT5 results are extremely low – below 0.001%, making data interpretation challenging since many software packages will just round the values to zero. The new AccuSizer version 3.1.4.0 software now reports very low PFAT5 values in scientific notation as shown in Figure 6.

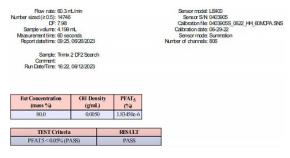


Figure 6. PFAT5 result using scientific notation.

CONCLUSIONS

Customers still using legacy AccuSizer 780 model instruments are encouraged to upgrade to the current systems to benefit from these and many other software improvements. With the addition of the automatic DF2 search and volume fraction calculations there should be no reason to remain using older, obsolete instruments that are now difficult to support.

Customers currently using older versions of AccuSizer software are encouraged to upgrade to the newest version for the continually improving features and bug fixes.

Examples of recent fixes in version 3.1.4.0¹ include:

- Fixed DF2 validation issue which prevented saving within APS protocol
- Fixed issue where instrument specific protocol settings were not included in database export
- Fixed issue where sample explorer did not display SIS protocol mixing parameters
- Updated CFR activation links
- Added full report template to installer for user report creation reference

References

¹ Release Notes delivered with the software

APPENDIX I. DF2 DERIVATION

Let dV_s represent the small volume of prediluted sample (coming from the predilution chamber), with particle concentration C_0 which enters one input of the secondary-stage diluter at flow rate F_1 during the short time dt,

$$dV_s = F_1 dt$$
 (Eq 1)

Let dV_D represent the small volume of fresh diluent which enters the other input of the diluter at flow rate F_D during the same time dt,

$$dV_{\rm D} = F_{\rm D} dt$$
 (Eq 2)

Let N_2 represent the change in the number of particles in the second stage diluter which results during dt (an increase due to fresh prediluted sample entering and a decrease due to particles/fluid leaving the chamber),

$$dN_{2} = + C_{0} dV_{s} - [(dV_{D} + dV_{s})/V_{2}] N_{2}$$
(Eq 3)

where V_2 represents the effective volume of the second stage diluter; in the case of a physically small "static" mixer, V_2 is typically < 10 ml.

Use equations (Eq 1) and (Eq 2) to rewrite equation (Eq 3),

$$dN_2 = - [(F/V_2) N_2 - C_0F_1] dt$$

(Eq 4)

where $F = F_{D} + F_{1}$, the flow rate of fluid/particles exiting the diluter.

Change variables: $M_2 = [(F/V_2) N_2 - C_0F_1]$, so that $dM_2 = (F/V_2) dN_2$. Use variable M_2 to rewrite equation (Eq 4),

$$dM_2 = - (F/V_2) M_2 dt$$
 (Eq 5)

Divide both sides of equation (Eq 5) by M_2 and integrate,

 $ln M_2 = - (F/V_2) t + C \text{ (const. of integration)}$ (Eq 6)

Rewrite equation (Eq 6) in exponential form and return to variable $N_2(t)$,

$$N_2(t) = (V_2/F) A \exp(-t/\tau_2) + C_0F_1 (V_2/F)$$

(Eq 7)

where τ_2 is the "residence time" of the second stage diluter (static mixer), typically less than 10 sec for a small effective volume V₂,

$$\tau_2 = V_2 / F \qquad (Eq 8)$$

Solve for constant A, to satisfy $N_2(0) = 0$, and substitute into equation (Eq 7),

$$N_{2}(t) = (C_{0}F_{S}V_{2}/F) [1 - \exp(-t/\tau_{2})]$$
(Eq 9)

Divide equation (Eq 9) by V_2 to obtain the time-dependent particle concentration in the fluid stream which exits the second stage diluter and enters the sensor,

$$C_2(t) = C_0(F_1/F) [1 - exp(-t/\tau_2)]$$

(Eq 10)

After enough time has elapsed, i.e. $t >>\tau_2$, the particle concentration at the output of the second stage diluter reaches a steady-state, equilibrium value, designated by C_2 ,

$$C_2 = C_0(F_1/F)$$
 (Eq 11)

This expression therefore establishes equation (Eq 12) for the second stage dilution factor, referred to as DF_2 ,

$$DF_{2} = C_{0}/C_{2} = F/F_{1} = (F_{1} + F_{D})/F_{1} = 1 + (F_{D}/F_{1})$$
(Eq 12)

It is useful to rewrite equation (Eq 10), using equations (Eq 11) and (Eq 12),

$$C_2(t) = C_2 [1 - exp(-t/\tau_2)]$$

(Eq 13)
where $C_2 = C_0/DF_2$ (Eq 14)

5

APPENDIX II. PFAT 5 AND VOLUME FRACTION EQUATIONS

PFAT 5

AbsVol (mL) =
$$\sum_{5 \ \mu m}^{50 \ \mu m} \operatorname{PreDf} \times \operatorname{count} \times \frac{4}{3} \pi \left(\frac{\operatorname{Size}}{2}\right)^3 \times 10^{-12}$$
TotVol (mL) =
$$\frac{\operatorname{PFAT} \operatorname{Conc}}{100} \times \frac{\operatorname{Sample Volume mL}}{\operatorname{PFAT Oil Density}}$$
PFAT5 =
$$100 \times \frac{\operatorname{AbsVol}}{\operatorname{TotVol}}$$
Volume Fraction
AbsVol (mL) =
$$\sum_{\operatorname{Range end }(\mu m)}^{\operatorname{Range end }(\mu m)} \operatorname{PreDf} \times \operatorname{count} \times \frac{4}{3} \pi \left(\frac{\operatorname{Size}}{2}\right)^3 \times 10$$
TotVol (mL) =
$$\frac{\operatorname{Percent solids}}{100} \times \operatorname{Sample Volume (mL)}$$
VF =
$$100 \times \frac{\operatorname{AbsVol}}{\operatorname{TotVol}}$$

FOR MORE INFORMATION

Please call your Regional Customer Service Center today to learn what Entegris can do for you. Visit <u>entegris.com</u> and select the <u>Contact Us</u> link to find the customer service center nearest you.

TERMS AND CONDITIONS OF SALE

All purchases are subject to Entegris' Terms and Conditions of Sale. To view and print this information, visit <u>entegris.com</u> and select the <u>Terms & Conditions</u> link in the footer.

Corporate Headquarters 129 Concord Road Billerica, MA 01821 USA
 Customer Service

 Tel
 +1
 952
 556
 4181

 Fax
 +1
 952
 556
 8022

 Toll Free
 800
 394
 4083

Entegris[®], the Entegris Rings Design[®], and other product names are trademarks of Entegris, Inc. as listed on <u>entegris.com/trademarks</u>. All third-party product names, logos, and company names are trademarks or registered trademarks of their respective owners. Use of them does not imply any affiliation, sponsorship, or endorsement by the trademark owner.

©2023 Entegris, Inc. | All rights reserved. | Printed in the USA | 7127-13166ENT-0923