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Drug Delivery Using 
Nanoparticles
Study and control nanoparticles  
using the Nicomp® DLS system

DRUG DELIVERY USING NANOPARTICLES
—
Considerable research and development is devoted to improving 

drug delivery through the use of nanoparticles. Although the 

definition of nanoparticle has become murky, typically they are 

defined being in the size range of 100 nm and below, Dynamic 

light scattering (DLS) is the preferred method in this size range 

and the Nicomp® is often used in this field of research. This 

application note summarizes how the Nicomp can be used to 

study and control nanoparticles used for drug delivery.

INTRODUCTION
—
Both ISO/TS 276871 and ASTM E24562 define nanoparticles as 

being in the size range of 100 nm and below, making this the most 

widely used classification. Less strict interpretations have extended 

the upper size range for both scientific, and other reasons. Now 

many nanomaterials greater than 100 nm in size are commonly 

called nanoparticles. The motivations for developing drug products 

in this size range include improved dissolution/bioavailablity, 

targeting, circulation time in the system, and area under the curve 

(AUC) pharmacokinetics.

Many of these drug products are developed to enhance targeting. 

A passive targeting approach increases the circulation time by 

reducing the size and cloaking the nanoparticle with a coating 

such as polyethylene glycol (PEG). An active targeting approach 

modifies the surface of the nanoparticle to seek and adhere to 

specific parts of the body, such as cancer tumors, while avoiding 

healthy tissue. Cell specific ligands on the surface of the nanoparticle 

can be added to bind specifically to complementary receptors.

The Nicomp DLS system (Figure 1) is an ideal instrument to 

measure both the size and zeta potential (surface charge) of 

nanoparticles used for drug delivery. 

Figure 1. Nicomp DLS instrument.

TYPES OF NANOPARTICLES
—

Nanocrystals

Active pharmaceutical ingredients (APIs) are often crystalline. 

Hydrophobic crystals can be difficult to formulate to be delivered 

in a hydrophilic carrier mechanism. By reducing the size to the 

nanocrystal range, a nanosupsension can improve the bioavailablity 

of drugs, where the dissolution velocity is the rate limiting step, 

such as poorly water soluble drugs.3 These nanocrystal often need 

to be stabilized using surfactants or polymers including during 

processing. A decrease in particle size increases dissolution rate by 

both increasing the surface area A (Figure 2) and the saturation 

solubility Cs.
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Figure 2. Surface enlargement with size reduction.

The Noyes-Whitney equation (Equation 1) shows how an increase 

in both A and Cs will affect the dissolution rate dC/dt.

dt
dC

 = 
Vh
DA

 (Cs – Cx) .............................................................(Equation 1)

Where

dC/dt = dissolution rate 

D = diffusion coefficient 

A = surface area 

Cs = concentration at boundary layer 

Cx = concentration API @ given time 

V = volume dissolution medium 

h = height of boundary layer
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Lipid-based liquid crystalline nanoparticles (LCNPs) 

are another delivery system capable of increasing 

bioavailability of both hydrophobic and hydrophilic 

drugs. These are self-assembled structures prepared 

by high shear energy dispersing of a nonlamellar liquid 

crystalline matrix into the water phase. The particle size 

of the LCNPs is an important physiochemical property 

requiring proper analysis and control. The Nicomp DLS 

system has been successfully used to determine both 

the mean size, and presence of aggregates in LCNP 

dispersions.4 Paclitaxel was loaded into a LCNP dispersion 

and analyzed by the Nicomp DLS system and TEM, 

see Figure 3.
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Figure 3. Nicomp and TEM results for an LCNP dispersion, copied with 
rights from .4

The TEM image indicates a bimodal particle size 

distribution of smaller near, 25 nm particles, plus 

larger particles on the scale of 100 nm. The upper 

Nicomp result is the Gaussian intensity distribution 

mean forcing the entire distribution into one peak. 

The lower Nicomp result utilizes the proprietary 

Nicomp non-negative least squares algorithm to 

report a higher resolution and more accurate 

description of the bimodal nature of the actual 

particle size distribution. This highlights a main 

advantage of the Nicomp DLS system – the ability  

to resolve multi-modal distributions even at 

concentrations as low as 0.2 mg/mL.5

Micelles

Another potential drug delivery system for increasing 

the solubilization of hydrophobic drugs is polymeric 

micelles.6 Micelles are formed when the concentration 

of the polymer, in solution, exceeds a certain threshold 

concentration known as the critical micellar con-

centration (CMC). Polymeric micelles are core-shell 

nanostructures synthesized from amphiphilic block 

copolymers. Micelles have the advantages of being 

very small in size (10 – 100 nm), improving passive 

targeting to solid tumors. By modifying the surface 

with ligands polymeric micelles can become capable 

of site-specific drug delivery.

The Nicomp DLS system has been used for particle 

size measurements in many micelle based research 

projects.7-11 In one study,12 polymeric micelles were 

formed using copolymers polycaprolactone (PCL) 

and polyethylene glycol (PEG). Docetaxel (DTX) was 

used as the model drug and the surface was modified 

with a small molecular ligand of prostate specific 

membrane antigen (SMLP). Figure 4 shows the 

self-assembly of the micelles and the endocytosis 

process of the drug loaded final structure.

Figure 4. Preparation and endocytosis of DTX loaded polymeric micelles 
targeted to PSMA.12

The particle size by the Nicomp DLS system, and TEM 

of two samples used in this study, is shown in Figure 5. 

The data for non-targeted micelles are shown on the 

left, and the targeted on the right. The DLS data appears 

slightly larger than the TEM images, possibly due to 

shrinkage of the PEG shell induced by water evaporation 

before TEM analysis.
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Figure 5. Size of non-targeted (upper) and targeted (lower) polymeric 
micelles by DLS and TEM .12

Liposomes

Liposomes are bilayer vesicles routinely used in the 

pharmaceutical industry as a drug delivery system for 

transport of chemotherapeutic drugs to the tumor area. 

They are composed of phospholipids that have a polar 

end attached to a nonpolar chain that self-assemble 

into bilayer vesicles with the polar ends facing the 

aqueous medium and nonpolar ends forming a bilayer. 

In pharmaceutical applications, the active pharma-

ceutical ingredient (API) is usually incorporated into the 

liposome either into the hydrophilic pocket or 

sandwiched between the bilayers depending on the 

hydrophilicity of the API, see Figure 6. Surface 

modification is common for targeted delivery.
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Figure 6. Complex liposome structure.

Monitoring the particle size while processing liposomes 

is critical and the Nicomp DLS system is frequently 

used for this application.13-20 In one internal Entegris 

study, liposomes were created using a formulation of 

3:1:1 HSPC, cholesterol and mPEG-DSPE. The sample 

was first mixed by rotor stator at 7200 rpm for 10 

minutes, then passed through a Microfluidizer21 at 

25,000 psi using a Y chamber to create the liposomes. 

The samples were processed 1, 3, 5, and 10 passes 

through the microfluidizer. An image of the premix and 

processed samples (left to right) is shown in Figure 7.

Figure 7. Pre-mix, 1, 3, 5, and 10 passes.
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The liposome samples were analyzed on both the 

Nicomp DLS system and the AccuSizer® single particle 

optical sizing (SPOS) system. DLS was used to determine 

the reduction of the intensity mean size during 

processing, while the AccuSizer (LE sensor range 

0.5 – 400 μm) was used to quantify the presence of 

larger particle tails of the distribution. The Nicomp DLS 

results are shown in Figure 8, and the AccuSizer SPOS 

results are shown in Figure 9.

Figure 8. Nicomp DLS results from right to left; premix, 1, 3, 5, and 10.

Figure 9. AccuSizer SPOS results right to left; premix, 1, 3, 5, and 10 passes.

Using both DLS to determine mean size and SPOS to 

quantify the presence and concentration of tails is 

common in many industries and is an integral part of 

USP <729> Globule-size distribution in lipid injectable 

emulsions.22

Online DLS for process monitoring

While the vast majority of DLS measurements are made 

in the laboratory, Entegris has installed several systems 

in customer manufacturing operations that track 

particle size during production runs.23 These systems 

have been used to monitor high-pressure homogeni- 

zation processes used during the manufacture of 

nanoparticles for drug delivery The at-line system 

removes a sample from the process, dilutes the sample 

to avoid multiple scattering effects, measures the 

sample, and then repeats the procedure (see Figure 

10). The complete measurement cycle is 

approximately two minutes, providing continuous 

particle size information to the process engineers 

monitoring the manufacturing operation.
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Figure 10. Online DLS system schematic.

Figure 11 shows online DLS results as a function of 

pressure downstream of a high pressure homogenizer. 

The goal was to determine and the optimum pressure 

to keep the particle size very close to 100 nm in size. 

After the optimum pressure (~10 k psi) was determined 

the online DLS system was used to assure the complete 

batch was manufactured within specification.
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Figure 11. Pressure vs. particle size in process DLS results.
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CONCLUSIONS
—
The Nicomp DLS system is widely used for particle 

size and zeta potential analysis of drug delivery systems 

in the nano scale in research,24-39 quality release 

testing and in process monitoring. The AccuSizer 

SPOS provides a complementary technique for 

determining the concentration of larger particles that 

could indicate instability or non-optimized formulation 

or process conditions.
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