

A Thermal Stability Study of Phosphoramidites Employed in Oligonucleotide Synthesis

Smita Patnaik, Jonathan Dube, and Scott Laneman – Entegris

INTRODUCTION

Phosphoramidites have played a pivotal role in development of RNA- and DNAoligonucleotide drug design via "Phosphoramidite Method of DNA Synthesis." The synthesis of phosphoramidites have been described in literature; however, little has been reported on the thermal stability of phosphoramidites. Process safety is an important mission when carrying out chemistry, not only in the manufacturing scale but also on bench and kilo scale. One of the common and detrimental industrial accidents is thermal runaway reaction. The impact of thermal runaway is very high because it could lead to catastrophe along with business interruption. In this work, we performed series of tests on phosphoramidites with various protecting groups to identify chemically unstable and high energy reactions. These tests identify sufficient safety margin about undesired and potential thermal decomposition.

METHODS

- Entegris proprietary route
- Non-distilled product isolated in 97.6% purities
- Stability issues purity decreases upon standing at room temperature
- Initiated accelerating rate calorimetry (ARC) and differential scanning calorimetry (DSC) testing

³¹P NMR of Non-Distilled (iPr₂N)P(OCH₂CH₂CN)₂

RESULTS

- Onset temperature of exotherm is 75.9°C, temperature rise to 179.6°C with -473.0 J/g of heat
- Product has low initiation temperature and high energy of decomposition
- Total heat released during ARC study is **-1271.3 J/g**
- Time to maximum rate (TMR): 0.9 hr at 70°C
- 24 hr at 47.7°C 69.6 hr at 41°C
- Product is a candidate for classification as a UN Class 1 explosive substance

Temperature and Pressure vs. Time

Temperature and Pressure vs. Time

Temperature and Pressure vs. Time

ARC Testing of (iPr₂N)P(OCH₂CH₂CN)₂ Purity Comparison

-			
	COMMERCIAL Sample	ENTEGRIS 'PURIFIED' CRUDE SAMPLE	PHOS REAGENT (DISTILLED)
Earliest onset temperature	70.9°C	75.9°C	170.5°C
Earliest onset energy	-569.4 J/g	-473.0 J/g	-406.7 J/g
Number of additional onsets	10	3	2
Highest energy onset	-569.4 J/g (70.9°C)	-772.3 J/g (190°C)	-406.7 J/g (170.5°C)
Time to maximum rate (TMR) estimates	0.8 hr at 65°C 24 hr at 41°C 52 hr at 36°C	0.9 hr at 70°C 24 hr at 48°C 70 hr at 41°C	0.5 hr at 170°C 24 hr at 150°C 195 hr at 140°C
Total heat released	-1163.2 J/g	-1271.3 J/g	-616.6 J/g

ARC Testing Comparison of Common Phosphoramidites

	iPr N p O CN				Ph O p N iPr N pr	IPr IPr IPr N N N IPr N IPr Me
	~98% PURITY	>99% PURITY	~94% PURITY	~99% PURITY	96% Purity	95% PURITY
Earliest onset temperature	75.9°C	170.5°C	110.7°C	170.5°C	170.9°C	210.7°C
Earliest onset energy	-473.0 J/g	-406.7 J/g	-467.1 J/g	-142.9 J/g	-490.5 J/g	-15.3 J/g
Number of additional onsets	3	2	3	2	2	3
Highest energy onset	-772.3 J/g (190°C)	-406.7 J/g (170.5°C)	-467.1 J/g (110.7°C)	>-158.5 J/g (330.1°C)	-490.5 J/g (170.9°C)	-276.8 J/g (230.8°C)
Time to maximum rate (TMR) estimates	0.9 hr at 70°C 24 hr at 48°C 70 hr at 41°C	0.5 hr at 170°C 24 hr at 150°C 195 hr at 140°C	1 hr at 130°C 24 hr at 91°C 48 hr at 84°C	0.5 hr at 176°C 24 hr at 170°C 48 hr at 169°C	8 hr at 156°C 24 hr at 143°C 48 hr at 128°C	0.5 hr at 253°C 24 hr at 210°C 48 hr at 203°C
Total heat released	-1271.3 J/g	-616.6 J/g	-651.8 J/g	-301.4 J/g	-616.6 J/g	-417.3 J/g

DSC Testing of (iPr₂N)P(OCH₂CH₂CN)₂ Purity Comparison

	ONSET TEMPERATURE	PEAK TEMPERATURE	END TEMPERATURE	ENERGY
Commercial sample 90% purity	40.5°C 81.8°C 194.9°C	67.9℃ 131.4℃ 287.7℃	77.3℃ 191.1℃ 382.1℃	-2.0 J/g -488.7 J/g -540.8 J/g
Entegris 'purified' crude sample 97.6% purity	66.7℃ 194.1℃	129.4°C 284.6°C	194.0°C 382.6°C	-542.7 J/g -615.4 J/g
Phos reagent (distilled) 99% purity	110°C 209.5°C 269.0°C 339°C	166.9°C 236.6°C 286.6°C 363.4°C	197.2°C 268.0°C 320.5°C 375.9°C	-58.3 J/g -224.6 J/g -31.5 J/g -10.2 J/g

CONCLUSION

Protecting groups on phosphoramidites can facilitate instability, exothermic decomposition, and potential explosive behavior. It is strongly recommended to fully understand the thermal characteristics of the phosphoramidites from a synthetic and supply chain perspectives.

ACKNOWLEDGMENT

The authors gratefully acknowledge DEKRA Services for the thermal hazard testing. Authors are especially thankful to Dr. Zhizhong Dong for providing the ARC and DSC analysis on various molecules.